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In developing a flexible body spacecraft simulation for the Launch Abort System of the
Orion vehicle, when a rapid mass depletion takes place, the dynamics problem with time
varying eigenmodes had to be addressed. Three different techniques were implemented,
with different trade-offs made between performance and fidelity. A number of technical
issues had to be solved in the process. This paper covers the background of the variable
mass flexibility problem, the three approaches to simulating it, and the technical issues
that were solved in formulating and implementing them.

Nomenclature

~af Inertial linear acceleration of the origin of the body reference frame
~an Inertial linear acceleration of node n
~ac

n Inertial acceleration of center of mass of nodal body n
~a⊕ Inertial linear acceleration of the mass center of the body
C Damping constant matrix of the body
~cn Position vector of the mass center of nodal body n with respect to node n
~F Total force on the body
~Fext,nExternal force on nodal body n
In Moment of inertia of nodal body n about node n
I⊕ Moment of inertia of nodal body n about its center of mass
Kee Elastic stiffness of body
m Number of mode shapes used to describe flexible deformation
mn Mass of nodal body n
mT Total mass of the body
Mee Elastic mass matrix of the body, symmetric (m×m)
Mre Rigid-elastic coupling matrix of the body (6×m)
Mrr Rigid mass matrix of the body, symmetric (6× 6)
N Number of nodal bodies
q Array of modal coordinates of the body (m× 1)
~rn Position vector of node n with respect to body reference frame after deformation
~Tn Total torque on nodal body n about node n
~Text,nExternal torque on nodal body n about node n
~T⊕ Total torque on the body about its mass center
~un Displacement of node n due to deformation with respect to body reference frame
~xf Inertial position vector of the origin of the body reference frame
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~xn Inertial position vector of node n
~xc

n Inertial position vector of center of mass of nodal body n
~αf Inertial rotation angles of body reference frame for small rotation
~ϕn,r Shape function of node n for its rth mode of deformation
~ψn,r Slope function of node n for its rth mode of deformation
Ψ Modal transformation matrix
ξ Transformed modal coordinates
= Reference frame of the body
=n Reference frame of nodal body n, located at node n
~ρn Position vector of node n with respect to body reference frame before deformation
~ωb Inertial angular velocity of the body when treated as a rigid body
~ωf Inertial angular velocity of the body reference frame
~ωn Inertial angular velocity of nodal body n
Ṽ Matrix expression for a vector ~V in cross product with another vector
[ ]T Superscript T represents transpose of a matrix

I. Introduction

In support of NASA’s Constellation Program,1 a series of pad abort flight tests had been planned to
demonstrate the ability of the Launch Abort System (LAS) to carry the Crew Exploration Vehicle (CEV),
or Orion, and its crew to safety in case of a mishap during launch. The first of these flight tests, known as
Pad Abort 1 (PA-1),2 has taken place, and it verified the basic functionality of the LAS from the pad based
on the preliminary design (see Fig. 1 for the PA-1 test vehicle configuration).

Figure 1. Pad Abort 1 configuration of the CEV+LAS system.

To support analysis, it had been decided to increase the fidelity of the original rigid body PA-1 Guidance,
Navigation, and Controls (GN&C) simulation, developed at the NASA Lyndon B. Johnson Space Center
(JSC), by adding structural flexibility to the simulation to account for the deflections of the abort and
attitude control motor jets as well as the inertial sensors. In some scenarios, these effects are important
factors in determining ascent abort trajectories.

The equations of motion (EOMs) for a flexible body are traditionally formulated in terms of a set of
assumed modes and six rigid degrees of freedom (DOFs). Free vibration mode shapes are the natural choice
for the assumed modes in the fixed mass case, but for variable mass, vibration mode shapes change as the
mass of the system depletes. We are not aware of there being a standard way of treating this variable mass
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flexibility problem, with the literature on the subject quite sparse.
From the implementation standpoint, the most straightforward approach to the variable mass flexibility

problem is to continue using a set of fixed assumed mode shapes for integrating the EOMs. We call it
Method 1, and it is essentially the standard Assumed-modes method,3 except that the mass matrix and
other parameters in the EOMs are now time-dependent. This approach was used by Tobbe et al.4

Given that the eigenmodes change with mass depletion, we had sought to characterize the accuracy of
using a set of fixed assumed modes as the basis for integrating the EOMs. This characterization was pursued
on two fronts: (1) To develop stand-alone tests of how accurately one reproduces the evolving eigenmodes
by solving the eigenvalue problem in this fixed basis as the mass depletes; and (2) To develop two alternative
techniques where the modes used in integrating the EOMs accurately reflect the evolving eigenmodes at all
times. We then compared the latter two simulation approaches with the first one as to the performance and
the expected degree of fidelity. In the end, this allowed us to select the higher performance approach as our
analysis tool, after showing that it agreed well with the slower, but a priori higher fidelity ones. We call the
two additional approaches Method 2 and Method 3.

Using continuously varying eigenmodes would introduce eigenmode derivative terms into the EOMs which
would be very cumbersome to compute numerically. It is, however, sufficient to use any fixed set of mode
shapes as the integration basis, provided that it spans the same subspace as the chosen number of eigenmodes.
To increase fidelity, the integration basis can be updated periodically to reflect the evolution of the subspace
spanned by the chosen number of time-dependent eigenmodes.

For the PA-1 problem, system level Nastran data for the combined CEV/LAS system is available for
the fully fueled state, fully expended or dry vehicle state, and two intermediate mass states. If we only
switched between the four available sets of modes during the PA-1 flight trajectory, re-expressing the modal
state vectors in the updated integration basis could introduce discontinuities in the physical state vectors at
transitions. Instead, in our Methods 2 and 3 we generate accurate updated eigenmodes during the run by
solving the vibration eigenvalue problem in a larger basis than the number of modes used in integrating the
EOMs. This can be done as frequently as needed, lessening the possible discontinuities. Methods 2 and 3
are distinguished by the type of the larger fixed basis they use.

The paper is organized as follows. Section II is devoted to the flexible body equations of motion. Sec-
tion III presents the three methods of simulating the variable mass problem, the numerical results comparing
the three methods, and the necessary background. This section is deliberately qualitative. Section IV con-
sists of three subsections devoted to the solution of three technical issues raised earlier in the paper. It also
contains numerical results on mode accuracy. Section V summarizes the conclusions of the paper.

II. Flexible Body Dynamics Equations of Motion

There is a large amount of literature on both dynamics of rigid bodies losing mass and dynamics of flexible
bodies of constant mass. However, flexible body effects of systems losing mass, such as rockets, have been
treated in detail by only a few authors. A derivation of equations of a rigid rocket with internal flow that can
be extended directly to include flexibility of the rocket is provided in Meirovitch.5 Meirovitch6 also derives
the partial differential equations of a flexible rocket with internal flow and presents a closed form solution of
a special case. Banerjee,7 which lists a few other works on dynamics of flexible bodies losing mass, provides
a new formulation for a variable mass flexible body system, which is suitable for finite element-based model
of a rocket. Tobbe et al.4 also address variable mass flexible structures in support of the propellant depletion
for the Ares I launch vehicle, another element of the NASA Constellation Program.

We have used a formulation based on the central ideas of Meirovitch5 and Banerjee7 in deriving the
EOMs of the combined CEV/LAS system for PA-1. The effect of internal flow of gases on rigid and flexible
motion has not been taken into account since it is considered to be small compared to the magnitude of
the propulsion forces. Also, no data is available to account for this effect, and therefore inclusion is beyond
the scope of this work. With these approximations, the effect of the ejecting masses becomes equivalent to
jet thrusts applied at the jet nozzles for the current configuration of the system. Moreover, the so-called
geometric stiffness considered in Banerjee7 has not been included, because the system is considered to be
sufficiently stiff for the motion of the rocket.

The motion of the flexible body is described by the six degree of freedom (DOF) motion of a reference
frame = coincident with the structural reference frame of the body, and a small flexural motion of the body
with respect to this frame. Craig3 expresses the flexural part of the motion as a linear combination of a set
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Inertial
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Figure 2. Nodal body description of a flexible body.

of assumed vibration modes of the system. A Finite Element Model (FEM) of the CEV/LAS system was
obtained from NASA’s Constellation program database; it considers the system as a collection of rigid nodal
bodies. Figure 2 depicts the flexible body schematically.

The linear displacement ~un and rotation ~θn of node n with respect to the reference frame is expressed in
terms of a set of shape and slope functions ~ϕn,r and ~ψn,r and the modal variables qr as

~un =
m∑

r=1

~ϕn,rqr and ~θn =
m∑

r=1

~ψn,rqr (1)

Since the flexural motion is considered to be small, the small angular motion ~θn is treated as a vector.
In Equation (1) it is assumed that for the purpose of our analysis flexural displacements can be adequately
expressed in terms of m shape and slope functions. Selection of the shape and slope functions is discussed
in the next section.

II.A. Kinematics

The linear velocity and acceleration of node n with respect to frame = are obtained by differentiating ~un

~̇un =
m∑

r=1

~ϕn,r q̇r and ~̈un =
m∑

r=1

~ϕn,r q̈r (2)

Similarly, the angular velocity and acceleration of node n in frame = is obtained by differentiating ~θn

~̇θn =
m∑

r=1

~ψn,r q̇r and ~̈θn =
m∑

r=1

~ψn,r q̈r (3)

From Fig. 1 we can see that ~rn, the position of node n in frame = and its inertial position ~xn are given
by

~rn = ~ρn + ~un = ~ρn +
m∑

r=1

~ϕn,rqr (4)

and

~xn = ~xf + ~rn = ~xf + ~ρn +
m∑

r=1

~ϕn,rqr (5)

Using kinematics, we get the expressions for inertial linear and angular velocities as well as linear and
angular accelerations of node n. For inertial acceleration of node n we have

~an = ~af + ~̇ωf × ~rn + ~̈un + ~ωf × (~ωf × ~rn) + 2~ωf × ~̇un (6)
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Inertial angular velocity and angular acceleration of node n are given by

~ωn = ~ωf + ~̇θn and ~̇ωn = ~̇ωf + ~̈θn + ~ωf × ~̇θn (7)

Since nodal body n is rigid, the inertial acceleration of its mass center is given by

~ac
n = ~an + ~̇ωn × ~cn + ~ωn × (~ωn × ~cn) (8)

II.B. Dynamics

The inertia force ~F ∗n and inertia torque ~T ∗n of the nodal body n about its mass center are given by

~F ∗n = −mn~a
c
n (9)

and
~T ∗n = − ( In~̇ωn + ω̃nIn~ωn ) (10)

For each nodal body, the sum of the inertia force, forces that acts on it from other nodal bodies, and
any external force that act directly on it, must be zero. When we sum the inertia and applied forces on all
the nodal bodies, the internal forces between nodal bodies cancel out according to Newton’s Third Law of
Motion, resulting in the translational EOM∑

n

~F ∗n +
∑

l

~Fext,l = 0 (11)

where ~Fext,l is the total external force acting on the flexible body at node l.
Taking the moment of the inertia forces and applied forces on the nodal body n about the origin of the

reference frame = and adding them for all the nodal bodies, and using the fact that moments of the forces
between the nodal bodies cancel out as a consequence to Newton’s Third Law, we get the rotational EOM∑

n

[(~rn + ~cn)× ~F ∗n + ~T ∗n ] +
∑

l

~rl × ~Fext,l +
∑

l

~Text,l = 0 (12)

where ~Text,l is the external moment acting on the body at node l.
For the flexible body EOM, we consider the virtual work done by the inertia and external forces and

moments, and the elastic forces between the nodal bodies due to virtual flexural deformation of the system.
Expressions for the virtual translation and rotation of application points of inertia and external forces is
obtained from Eq. (1). The virtual work consideration leads to the flexible body EOM

∑
n

([
~ϕn,r + ψ̃n,r~cn

]
• ~F ∗n + ~ψn,r • ~T ∗n

)
−

m∑
i=1

Kr,iqi

−
m∑

i=1

Cr,iq̇i +
∑

l

~ϕl,r • ~Fext,l +
∑

l

~ψl,r • ~Text,l = 0 (13)

for r = 1, 2, ...,m, where K and C are the m×m stiffness and modal damping constant matrices, respectively.
After substituting the expressions for ~F ∗n and ~T ∗n , the EOMs of Eqs. (11), (12) and (13) may be written in
matrix form as [

Mrr Mre

MT
re Mee

] {
Af

q̈

}
+

{
br

be

}
+

{
0

Kq + Cq̇

}
=

{
fr

fe

}
(14)

where Af =

{
~af

~̇ωf

}
, br and be are, respectively, (6 × 1) and (m × 1) arrays of nonlinear terms, i.e., terms

from ~F ∗n and ~T ∗n in Eqs. (11), (12), and (13) that do not contain the acceleration terms ~af , ~̇ωf and q̈; and
fr and fe are (6× 1) and (m× 1) arrays, respectively, containing the ~Fext,l and ~Text,l terms.

The terms Mrr, Mre, Mee, br and be involve constant integrals, commonly known as modal integrals,
computed from the shape and slope functions and node mass and moment of inertia (summed over all nodal
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bodies). Derivation of these terms is straightforward but very tedious and is omitted here for the sake of
brevity. Defining gr = fr − br and ge = fe − be, the EOMs of the flexible body may be written as[

Mrr Mre

MT
re Mee

] {
Af

q̈

}
+

{
0

Kq + Cq̇

}
=

{
gr

ge

}
(15)

Equation (15) is identical in form to the expressions given in both Quiocho et al.8 and MacLean et al.,9

with the exception of the single body versus multibody notation.

III. Numerical Solution

III.A. Fixed, continuously varying, and piecewise constant bases

Even for very small systems, for which all DOFs can be kept, one has to choose a set of flex modes to
separate the rigid and flex DOFs. A convenient choice is to solve the vibration eigenvalue problem, which
produces 6 rigid and 6N − 6 flex eigenmodes (where N is the number of 6 DOF rigid nodes in the FEM).
For large systems, only a small number M of the 6N − 6 flex modes is retained in the EOMs. A common
approach is to keep M lowest frequency eigenmodes.

It is intuitively appealing to generalize this to the variable mass case and consider the integration basis
of M time-varying eigenmodes. Here integration basis refers to the set of flex modes used in integrating the
EOMs. While conceptually attractive, this basis of time-varying eigenmodes is not easy to use in practice
due to the mode derivative terms that would appear in the EOMs, which would require computing these
derivatives numerically.

However, the intuitive appeal of the integration basis of time-varying eigenmodes may overstate the
necessity of such a basis. If all 6N − 6 flex DOFs were used in integrating the EOMs, any basis of 6N − 6
modes, combined with the 6 rigid DOFs in the EOMs, would span the same set of possible deformed states of
the system in various locations and orientations. A fixed basis of this size would then be rigorously equivalent
to the basis of 6N − 6 time-varying eigenmodes.

Even for a reduced set of M modes, a fixed basis of M modes that spans the same M -dimensional
subspace at time t as M lowest frequency eigenmodes, will approximately continue to do so for an interval
of time ∆t, barring possible mode crossings. At time t + ∆t the fixed basis can be updated to match the
latest set of M eigenmodes, and the updated basis will remain accurate for the next ∆t period. We have
now arrived at the idea of a piecewise constant integration basis, i.e., one that remains constant between
periodic updates. Its importance is that one integrates the EOMs between times t and t+∆t just like for any
fixed integration basis, with no additional mode derivative terms in the EOMs, while allowing it to change
periodically to track the evolution of the eigenmodes.

An additional computation required with a piecewise constant integration basis is to re-express the flex
state of the system in terms of the new basis vectors when the basis is updated. When the basis is complete,
so that M = 6N − 6, we can impose continuity conditions on the deformations and their velocities. If the
flex modes at time t are φ(1)

f , and the mode amplitudes and their time derivatives are η(1)
f (t) and η̇

(1)
f (t),

when the flex modes are updated to φ(2)
f , the continuity requires that

6∑
r=1

φrηr +
6N−6∑
f=1

φ
(2)
f η

(2)
f (t) =

6N−6∑
f=1

φ
(1)
f η

(1)
f (t) (16)

6∑
r=1

φrη̇r +
6N−6∑
f=1

φ
(2)
f η̇

(2)
f (t) =

6N−6∑
f=1

φ
(1)
f η̇

(1)
f (t) (17)

where the rigid modes are included on the left hand side of the equation only. The reason the six rigid mode
amplitudes are absent from the right hand side is because they are not present in the EOMs, where the
rigid DOFs are represented in a different way than small deformations. However, we are forced to introduce
them on the left because the size of the deformation vector is 6N , so 6N − 6 flex amplitudes will generally
not be sufficient to represent it once the basis is changed. The physical interpretation of these seemingly
superfluous rigid mode amplitudes is that matching the inertial states of all finite element nodes upon the flex
basis change, also requires an adjustment of the inertial state of the vehicle Structural Reference (SR) frame,
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i.e., of the rigid DOFs. Adjusting the rigid body position, orientation, and their corresponding velocities
every time the flex basis is updated is possible but not desirable. This is because of the additional small
errors in the inertial states of the individual nodes that would be introduced by the nonlinearity of the
3D rotations. We developed a special technique to avoid these SR frame adjustments; it is presented in
Section IV.C.

When the basis is incomplete, so that M < 6N − 6, the equalities of Eqs. (16) and (17) can generally
not be satisfied. Instead, one seeks to minimize the resulting discontinuity, i.e. the differences between left
and right hand sides of the two equations, in an average sense. The update algorithm that was used is
also presented in Section IV.C. While the possibility of discontinuities exists and must be accounted for, we
know from our prior experience with flexible multibody space robotics simulations that in practice it may
be negligible.8 We have not observed them in the quantities of physical interest that we have examined for
the two PA-1 simulations we implemented that use piecewise continuous bases.

We would like to note that we consider it a possibility that in the limit ∆t → 0, a piecewise constant
basis of periodically updated M lowest eigenmodes, coupled with re-expressing the modal variables in the
new basis at every update, is mathematically equivalent to using M continuous eigenmodes with modal
derivative terms. However, we have not yet verified this hypothesis.

Of the three basis types we have described – fixed, continuously varying, and piecewise constant – only
the fixed and piecewise constant bases are of practical use, at least for the PA-1 problem.

Note that implementing a piecewise constant integration basis requires a means of interpolating M lowest
frequency eigenvectors during the run. To take full advantage of this type of basis, we want to be able to set
the basis update frequency to an arbitrary value, which generally requires being able to generate the basis
vectors accurately at any time during the run. For example, in our PA-1 simulation where we were only
provided with 4 sets of vibration eigenmodes corresponding to 4 different fuel levels, we chose to update the
integration basis 20 times during the run.

The next section describes three different ways of treating modes in a variable mass problem that were im-
plemented for PA-1: a fixed-basis one, and two utilizing piecewise constant integration bases. The differences
between the latter two are in how mode interpolation is handled.

III.B. Three methods of the EOM integration

The available Nastran FEM data for the PA-1 system were for the fully fueled (Full), fully depleted (Empty)
and two intermediate (I1-intermediate and I2-intermediate) fuel levels; I1-intermediate had half full Abort
Motors and nearly full Attitude Control Motors, while I2-intermediate had empty Abort Motors and half
full Attitude Control Motors. Each data set included the first 100 free vibration mode shapes (6 rigid zero
frequency and 94 flex finite frequency) and their frequencies for the corresponding mass matrix, which was
also included in the data set. The stiffness matrix was assumed to be independent of the fuel level. Since the
purpose of the simulation was for GN&C analysis, 34 flex modes were used for integrating the EOMs given
by Eq. (15), providing frequency coverage up to about twice the maximum frequency relevant for GN&C.

The three methods that were implemented for integrating Eq. (15) are:
Method 1: Fixed integration basis
Method 2: Piecewise constant integration basis - eigenmode interpolation via “ordinary” large fixed basis
Method 3: Piecewise constant integration basis - eigenmode interpolation via “expanded” large fixed basis

III.B.1. Method 1

In the first method, a fixed set of mode shapes is used as the integration basis. Equation (15) is integrated
directly, inverting the mass matrix at every time step to obtain the second derivatives from the generalized
forces. The eigenvalue problem is never solved explicitly at run-time; it is built into the formalism implicitly.
In practice, a certain number of lowest frequency eigenmodes from one of the mass states are often chosen
as the basis for state integration across all of the mass states.

Various modal integrals in Eq. (15), namely Mre, Mee, and those appearing in the nonlinear terms on the
right hand side were computed with the above fixed basis in the four available mass states and interpolated
for other mass states that occur during the run based on those four sets of modal integrals.
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An important advantage of performing integration in a fixed set of dynamical variables is that no dis-
continuities occur in any physical quantity. It is also relatively computationally efficient since one does not
perform transformations of various quantities between different bases, nor ever solve an eigenvalue problem.

A drawback of Method 1 is the lack of controllability of the eigenmode modeling accuracy. A basis
consisting of M exact eigenmodes from one mass state may not yield M accurate eigenmodes in another, yet
the latter are implicitly used at the point in the integration when the system passes through the corresponding
mass state.

With the eigenmodes for the PA-1 system available for four mass states, there are four choices for
selecting the integration basis of 34 flex modes. To characterize the accuracy of a candidate integration
basis, we first solved the 40× 40 vibration eigenvalue problem (6 rigid + 34 flex DOFs) in each of the three
mass states other than the mass state the basis was drawn from. Using a simple mathematical expression for
the “distances” between these computed and the corresponding true eigenmodes, we obtained a quantitative
measure of accuracy with which the candidate basis reproduces the true eigenmodes in various mass states.
This distance measure is one of the two mode characterization techniques we have used that are presented
in Section IV.A.

Table 1 in Section IV.A shows the distances between 34 true eigenmodes in the Empty fuel state and
the corresponding approximate eigenmodes obtained with the basis from the I1-intermediate fuel state.
From that table, we see that the first 24 approximate Empty flex modes are accurate, while the top 12
are inaccurate, some quite drastically so. These results are typical. After examining the four candidate
integration bases via this technique, we selected the I1-intermediate set as the better all around integration
basis to approximate the true eigenvectors across the whole mass spectrum from Full to Empty. As we can
see, even this choice is far from perfect.

One can, of course, always seek to improve the accuracy of a fixed integration basis by increasing the
number of modes in it. This affects performance because the mass matrix that has to be inverted at every
time step is larger, and the size of other modal integrals increases as well. Furthermore, the appearance of
higher frequencies often requires reducing the size of the integration time step.

III.B.2. Method 2

To deal with the shortcomings of Method 1, which used a fixed integration basis, and to check its accuracy
for PA-1 modeling as an integrated simulation, rather than just via stand-alone mode proximity tests, a
simulation with a piecewise constant integration basis was developed. We call this Method 2.

Method 2 uses an auxiliary larger fixed basis of size NB + 6 (six rigid + NB flex modes) for eigenmode
interpolation needed by the piecewise constant integration basis during the integration basis update. When-
ever the integration basis needs to be updated, one solves the (NB + 6)× (NB + 6) eigenvalue problem with
the current mass matrix, retaining NR < NB lowest-frequency eigenvectors for use in integrating Eq. (15).
The eigenmodes are recomputed several times during the run, the state of the system is re-expressed in the
new integration basis at each update, and the integration continues in the new integration basis until the
next update.

An implementation detail worth mentioning is that it can be numerically costly to transform some of
the higher-order modal integrals from the fixed large basis in which they have been pre-computed to the
new integration basis at each basis update. It can be more efficient to transform the state vector of the
system from the integration to the larger fixed basis, compute the nonlinear terms in the fixed basis, and
then transform them back to the integration basis for actual integration.

The main advantage of using an appropriately chosen larger auxiliary basis, and then using only a subset
of its eigenmodes as the integration basis, is that the integration is then performed with accurate eigenmodes
in all the mass states. While the basis of size NB + 6 will not yield NB accurate flex eigenmodes in all the
mass states, it may yield accurate results for the lowest NR eigenmodes. This approach can thus be seen as
a kind of interpolation scheme for the lowest NR eigenmodes across all the relevant mass states. One can
also think of it in terms of starting with a larger fixed set of NB assumed modes in the EOMs of Eq. (15)
and then performing modal decomposition and truncation to NR retained modes.

An important drawback is the potential appearance of discontinuities in the physical quantities important
for the PA-1 problem at each integration basis recomputation. This may be especially pronounced at mode
crossings, when what was mode number NR becomes mode number NR + 1 and is dropped from the basis
along with the deformation of the body due to that mode’s former non-zero amplitude. This effect would
be present even if the basis recomputation were performed at each integration time step. With relatively
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infrequent updates, mode NR may jump through several modes to NR + j with j > 1, and it is even
possible that more than one mode will leave the original set during a single update. Even without such
mode crossings, the recomputed set of NR lowest eigenmodes will span a slightly different subspace of the
NB-dimensional basis space, resulting in slight discontinuities that would, however, diminish with the higher
frequency of integration basis update.

Valid as the above theoretical considerations may be, past experience with flexible robotic manipulator
dynamics simulations (such as those in Quiocho et al.8) shows that these discontinuities are not necessarily
noticeable in practice, at least when updates are frequent enough. For the PA-1 simulations under discussion,
it appears that whatever discontinuities take place are either small or are not in the quantities that affect
the integrated GN&C performance.

The auxiliary basis of Method 2 simply uses the 6 rigid plus all 94 finite frequency modes from one of the
four available data sets. To assess the accuracy of the four choices the four data sets offer for the auxiliary
basis, the same kind of stand-alone mode analysis described earlier in Section III.B.1 (and presented fully
in Section IV.A) was performed. Table 3 in Section IV.A shows the accuracy of the 34 eigenmodes in the
Empty fuel state obtained with the 100 vector auxiliary basis of eigenvectors from the I1-intermediate mass
state. The 34 eigenmodes are shown to be quite accurate, as they are also found to be in the other mass
states, so the I1-intermediate basis is a suitable choice of the auxiliary basis.

III.B.3. Method 3

One problem with the basis of Method 2 is its large size relative to the number of retained modes, which
degrades performance. Another is its “unimprovability” with regard to accuracy. There are four choices
of the 100 vector auxiliary basis with the four available data sets; they provide whatever accuracy for the
lowest 34 modes across the mass spectrum that they provide, and once the best basis among the four has
been chosen, no further improvement in accuracy for the 34 modes is possible.

To address these problems, we developed a technique for generating a different type of auxiliary basis
starting with the available eigenmodes in all four mass states. The 6 rigid plus 34 lowest finite-frequency
modes in one of the sets were used as a ‘starter basis’, and the 34 lowest modes from each of the other
three sets that were not already accurately represented by the starter basis were analyzed for possible
addition to that basis. Using an approach inspired by the Gram-Schmidt orthogonalization procedure,10 the
remaining vectors were analyzed during each iteration, and those that were nearly linearly dependent with
the starter basis and the other vectors that had already been added to the basis during previous iterations,
were eliminated. One of the remaining vectors was added to the basis and the iteration then repeated. The
vector elimination threshold ε was set to 0.01, and the resulting 51 vector auxiliary basis (6 rigid plus 45 flex
modes) provided the accuracy of about 0.01 for the lowest 34 modes across all the mass states. We call this
type of basis an “expanded” basis, to show that the basis vectors in it are drawn from different mass states,
unlike what what was done in Methods 1 and 2 above.

After the 51 × 51 eigenvalue problem is solved, the additional 11 flex modes are not guaranteed to be
physical and are simply discarded, leaving 34 accurate flex modes for integration. The exact procedure and
the rationale for it are presented in Section IV.B.

Stand-alone eigenmode analysis (see Tables 4 and 5 in Section IV.B below) shows that this basis indeed
produces accurate results for 34 lowest eigenfrequencies and eigenvectors across the whole mass range of the
simulation. It achieves this accuracy while being considerably smaller in size than the 94 vector basis of
Method 2. Moreover, the accuracy is more controllable since we can adjust the accuracy threshold ε.

III.C. Numerical Results

The PA-1 FEM model is quite large (over 70,000 nodal bodies). Mass matrices, mode shapes, and frequencies
were provided for six rigid modes and 94 lowest frequency vibration modes for each of the four fuel levels,
which were in turn used to generate four sets of modal integrals. During the simulation run, the flexible
model remained active for the interval of 11 to roughly 32 seconds, from the time the launch is aborted to
the time when the LAS separates from the crew module. This approach was used because the LAS is the
primary contributor to the flexibility of the combined CEV/LAS system.

Figure 3 shows the linear deflection of one of the Abort Motor jet nozzles in the axial direction for four
different cases. The 94-modes-I1-Method1 shows the data obtained using all 94 mode shapes with the fuel
level I1-intermediate and Method 1, whereas 34modes-I1-Method1 represents the same mode shapes but
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keeping only 34 modes while also using Method 1. The 34-modes-I2-Method2 is for the same fuel level and
number of retained modes but instead using Method 2 with a larger auxiliary basis of 100 modes (6 rigid +
94 flex). Finally, 34modes-X-Method3 shows the results for Method 3 with 34 retained modes obtained with
an auxiliary “expanded basis” of 51 modes (6 rigid + 45 flex).
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Figure 3. AM Nozzle 1 flex linear displacements.

Figures 4 through 6 show selected components of differences in inertial positions of the mass center
obtained by different methods, with respect to selected methods. Only the components having the largest
differences are presented. Figure 4 shows the differences in Z coordinates of inertial positions of the mass
center from solutions using Methods 1 and 2 with respect to Method 3 (considered to be the most accurate
for a given number of retained modes from theoretical considerations). Results for Methods 1 and 2 are
labeled 34modes-Method1 and 34modes-Method2, respectively. The difference between the original rigid
solution and Method 3 is labeled Rigid.

Figure 5 shows the differences between Y components of inertial positions obtained by Method 1 keeping
34 modes when mode shapes of different fuel levels are used. The difference is computed with respect to the
solution that uses mode shapes of the I1-intermediate fuel level.

Figure 6 shows the differences between Z components of inertial positions obtained by Method 1 keeping
all 94 modes when mode shapes of different fuel levels are used versus the solution obtained by Method
3 with 34 retained modes. For completeness, the results also includes the data for the original rigid body
solution.

The results of Fig. 3 show that the system is quite stiff and therefore the flexible body trajectories
computed by the different methods are close to each other. Figures 4 through 6 demonstrate this. Figures 3
and 4 show that Methods 2 and 3 produce almost indistinguishable results. This is expected since both
methods use a regularly updated piecewise continuous integration basis, and as Tables 3 and 4 in Section IV.A
below illustrate, both employ accurate eigenmodes for the instantaneous fueling level during each integration
basis update.

The differences in flex deflections on one axis seen in Fig. 3 were found to reduce significantly between
Method 1 with 94 assumed modes, Method 1 with 45 assumed modes, and Method 2 with 45 retained
modes. However, the differences in deflections seen with 34 modes do not cause significant differences in the
computed trajectories. Our interpretation is that 34 modes are sufficient, as expected, for GN&C analysis,
but some of the other response still requires higher frequency modes for better accuracy. It can also be
noticed that the rigid trajectory is observably different from the flex trajectories, though the differences are
not large for the overall distance traveled.
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Figure 4. PA-1 Mass center trajectory differences for different methods using mode shapes of fuel level I1-intermediate
with 34 retained modes. Differences computed relative to solution by Method 3 with 34 retained modes.
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Figure 5. PA-1 Mass center trajectory differences using standard assumed-modes method and mode shapes for different
fuel levels, with 34 retained modes. Differences computed relative to results for fuel level I1-intermediate.
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Figure 6. PA-1 Mass center trajectory differences using standard assumed-modes method and mode shapes for different
fuel levels, with 94 retained modes. Differences computed relative to solution by Method 3 with 34 retained modes.

Based on the results, we conclude that Method 1 with 34 retained modes is sufficient for performing
Monte Carlo type GN&C analysis runs, because it does not require periodic modal decomposition of the
system (a computationally expensive task) and is therefore the fastest in execution.

IV. Technical Developments

IV.A. Characterization of Mode Shapes

IV.A.1. Mode proximity measure

In Methods 2 and 3 we solve the eigenvalue problem in various mass states in specified bases. Method 1 does
not involve explicit numerical solution of the eigenvalue problem, but vibrations are present in the dynamics
implicitly, with the implicit basis being the set of assumed modes used plus the additional six rigid body
modes.

Suppose we have a set of true and approximate eigenmodes, φtrue and φcomputed, and both sets are
normalized with respect to the mass matrix M . We want to find some measure of the magnitude of the
difference between the true and the corresponding approximate eigenmode to characterize the accuracy of
the approximate solution.

Without additional criteria, for example, special emphasis on the accuracy of the displacement of certain
nodes, a generic measure is needed. A natural distance measure to use in this case is the one based on the
mass matrix M . The corresponding mode distance criterion is

D = min
[(
φcomputed ± φtrue

)T
M

(
φcomputed ± φtrue

)]1/2

(18)

Note that the eigenvectors produced by different programs for solving the eigenvalue problem may differ from
each other by a minus sign, so an approximate mode close to the exact one may be pointing in the opposite
direction. This would result in a large difference vector (φcomputed − φtrue). To account for this possibility,
we compute Eq. (18) for both the sum and the difference of the two vectors, and choose the smallest of the
two numbers as the accuracy measure. Using the normalization condition on φtrue and φcomputed, we obtain

D =
[
2
(
1− |φT

computedMφtrue|
)]1/2

(19)
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The maximum value this expression can yield is
√

2, when the true and computed vectors are perpendicular.
The minimum value is zero when the computed eigenvector is identical to the true one.

For eigenvectors with closely spaced eigenfrequencies, the order of the computed frequencies may be
opposite to that of the true ones. To analyze for this possibility, we compute the matrix of distances between
different pairs of computed and true eigenvectors as

Dmn =
[
2
(
1− |φT

computed,mMφtrue,n|
)]1/2

(20)

These values can be recorded as a table and then inspected for possible eigenvector interchanges.

IV.A.2. Adequacy of reduced subspace measure

Another useful measure of what using a reduced subspace does is described here. We take a true eigenvector
of mass matrix M (2), expand it in terms of a basis φ(1)

n orthonormalized with respect to mass matrix M (1),

φ
(2)
true =

∑
n≤Nret

cnφ
(1)
n +

∑
n>Nret

cnφ
(1)
n (21)

and observe that the first part of the expansion lies in the reduced subspace spanned by Nret retained
basis vectors. The second term lies outside that subspace and can never be captured by any approximate
calculation of the modes restricted to the reduced subspace. Note that we include 6 rigid modes among the
retained ones.

Numerically, the weight of the out-of-subspace part relative to the in-subspace part is captured by

R =

(∑
n>Nret

c2n
)1/2(∑

n≤Nret
c2n

)1/2
(22)

It is helpful to imagine a vector in a 3-dimensional space, and ask how well it can be represented by a vector
in a reduced 2-dimensional subspace, i.e., a plane. Referring to Fig. 7, we characterize the subspace adequacy
by the ratio of the length of the out-of-plane component of the vector, to the length of its in-plane component.
This ratio is just the tangent of the angle between the vector and the plane, which is the geometric analogy
for our expression above.

Figure 7. Decomposition of a vector into in-plane and out-of plane parts.

To evaluate R of Eq. (22), we compute the first Nret coefficients cn from

cn = φ(1)
n

T
M (1)φ(2), n ≤ Nret, (23)

since we have data for the retained modes. For the remaining cn coefficients, consider φ(2)T
M (1)φ(2), which

is a square of the norm of the vector φ(2) with respect to the mass matrix M (1). Substituting the expansion
φ(2) =

∑
n cnφ

(1)
n for φ(2), and using the orthonormality relations among φ(1)

n , we obtain

φ(2)T
M (1)φ(2) =

∑
n

c2n =
∑

n≤Nret

c2n +
∑

n>Nret

c2n (24)

Since we already know coefficients cn for n ≤ Nret, and since we can compute φ(2)T
M (1)φ(2) directly, the

final expression showing how much of the true vibration eigenvector φ(2) does not lie in the φ(1)
n , n ≤ Nret
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subspace is

R =

(
φ(2)T

M (1)φ(2) −
∑

n≤Nret
c2n

)1/2

(∑
n≤Nret

c2n

)1/2
(25)

A similar measure using matrix M (2) rather than M (1) can also be written.

IV.A.3. Numerical results for the accuracy of the PA-1 modes

Table 1 shows the distances (see Eqs. (18) and (19)) between the computed and true modes in the Empty fuel
state, the latter obtained with a 40 mode basis of 6 rigid and 34 flex modes drawn from the I1-intermediate
mass state. One can see that the first 22 modes are accurate, while the top 12 modes are not accurate, some
quite drastically so. Table 2 shows the R values for the Empty eigenmodes with respect to this basis. The
two criteria are seen to complement each other well.

Table 1. Distances Dnn between 34 true and computed finite frequency Empty modes, the latter obtained with a 40
mode (6 rigid + 34 flex) basis of eigenmodes from the I1-intermediate mass state. The data is listed row by row.

0.005229 0.005729 0.000112 0.000361 0.000269 0.000024
0.000334 0.000370 0.009187 0.009899 0.000866 0.000473
0.000763 0.004134 0.000743 0.000139 0.000494 0.000501
0.015117 0.013731 0.037520 0.042375 0.246295 0.267012
0.250930 0.294966 0.810824 0.687222 0.567872 1.375331
1.269756 1.276961 0.893421 1.283446

Table 2. Measure R for 34 true Empty flex eigenmodes, showing the ratio of the out-of-basis part to the in-basis part
for each eigenvector with respect to the 40 mode (6 rigid + 34 flex) basis of eigenmodes from the I1-intermediate mass
state. The data is listed row by row.

0.004599 0.005130 0.000124 0.000403 0.000320 0.000026
0.000358 0.000388 0.010180 0.010884 0.000811 0.000505
0.000804 0.004596 0.000700 0.000130 0.000394 0.000412
0.015179 0.012181 0.033963 0.039985 0.189347 0.099630
0.041344 0.192263 0.473543 0.266537 0.127798 0.215277
0.188542 0.370136 0.661967 0.880828

Since we chose the number of modes to provide twice the frequency coverage needed for GN&C analysis,
such basis may still yield adequate simulation results if it is only the higher frequency modes that are
not accurately represented throughout the whole mass range. The distance measure allows us to test a
prospective basis by indicating which modes computed with it in different mass states are accurate.

To further validate the results obtained with this basis, we use a larger auxiliary basis. The larger basis
is also tested, to verify if it provides accurate results for 34 flex modes in all mass states. Table 3 shows
the distances between 34 true and computed modes in the Empty fuel state with a 100 vector (6 rigid + 94
flex) basis drawn from the I1-intermediate mass state. We can see that this basis is reasonably accurate to
simulate 34 modes with confidence.

IV.B. “Expanded” Basis

IV.B.1. Expanded basis algorithm

We have four sets of PA-1 Nastran data for 6 rigid plus 94 lowest frequency flex modes representing four
different fuel levels. Choosing one of these sets as the basis for solving the eigenvalue problem in all the mass
states may yield adequate results, but it is not a controllable procedure beyond the ability to choose among
the four sets.
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Table 3. Distances Dnn between 34 true and computed finite frequency Empty modes, the latter obtained with a 100
mode (6 rigid + 94 flex) basis of eigenmodes from the I1-intermediate mass state. The data is listed row by row.

0.001150 0.001188 0.000032 0.000092 0.000133 0.000006
0.000082 0.000088 0.002059 0.002057 0.000170 0.000056
0.000126 0.002015 0.000381 0.000049 0.000071 0.000070
0.004856 0.010771 0.006734 0.005845 0.017134 0.005925
0.003087 0.014496 0.018830 0.014210 0.003948 0.015211
0.018635 0.012768 0.011903 0.008483

If we hypothetically used all 400 vectors from all of the available mass states as one big basis, the resulting
eigensolution would provide exact eigenmodes and eigenfrequencies in each of the four mass states. This
hypothetical basis is unnecessarily large because of many nearly vanishing linear combinations among the
vectors. We eliminate such near linear dependencies by the Gram-Schmidt inspired procedure with finite
resolution that is described below.

If we only need to interpolate a smaller number of modes than 100, this heuristic argument still applies
if we start with a subset of NR modes from each of the data sets.

Step 1: Gather NR lowest eigenvectors, including 6 rigid modes, from each of the four sets into a set of
4NR vectors. Choose one of the four sets of NR eigenvectors as the seed basis. Call these basis vectors e(s)

n

and the matrix they come from M (s). Set the accuracy threshold ε.
Step 2: Reduce the other 3NR vectors by subtracting their components parallel to the seed basis vectors,

v → v′ = v −
NR∑
n=1

(
v ·M (s)e(s)

n

)
e(s)

n . (26)

We use e(s)
n that are normalized with respect to their mass matrix M (s). Vector v initially stands for any of

the e(s′)
n from the other sets s′.

Step 3: Evaluate the magnitude of each reduced v via

D(v) =
(
v ·M (s′)v

)1/2 (27)

Note that we evaluate each reduced vector’s size with respect to it’s own mass matrix M (s′), not the M (s)

of the seed basis.
Step 4: Eliminate vectors with D(v) < ε from further consideration.

If all the reduced vectors v have thus been eliminated, go to Step 7 below to record the final basis, which
is just the seed basis.

If any reduced vectors v with the magnitude greater than ε still remain, add the one with the largest
magnitude D(v) to the seed basis. Name it fa.

NOTE: Do not rescale any of the remaining reduced vectors v. Their unscaled size shows how much of
an error still remains in the eigenvectors they originate from.
Step 5: Subtract the components of the last added basis vector fa from all the remaining non-eliminated
reduced vectors via

v → v′ = v −
(
v ·M (s)fa

)(
fa ·M (s)fa

) fa, (28)

where the projection is defined with the respect to the seed basis mass matrix M (s).
Step 6: Go back to Step 3 and iterate.
Step 7: Record the basis. We have generated a basis consisting of the seed basis and a set of vectors that
have been transformed from their original values e(s′)

n by a series of subtractions. However, we do not save
the transformed versions, but rather the original e(s′)

n vectors - transformations are only used as part of the
selection process.
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Step 8: Compute the stiffness matrix among the selected basis vectors. The basis vectors are eigenvectors
from four different mass matrices M (s), so each satisfies

Ke(s)
n = ω(s)

n

2
M (s)e(s)

n , s = 1, . . . , 4 (29)

for its own M (s). For two vectors from the same set s, the stiffness mass matrix element between them is
already known to be

e(s)
m ·Ke(s)

n = ω(s)
n

2
δmn (30)

To compute K among basis vectors from different sets s′ and s, we use a mathematical identity involving
the vibration eigenvalue Eq. (29),

e(s′)
n′ ·Ke(s)

n = ω(s)
n

2
(
e(s′)

n′ ·M (s)e(s)
n

)
= ω

(s′)
n′

2 (
e(s′)

n′ ·M (s′)e(s)
n

)
(31)

Equations (30) and (31) allowed us to compute the stiffness matrix in the chosen basis even though the
full stiffness matrix K used in Nastran computations was not available to us. The need to rely on Eq. (31)
to compute the stiffness matrix elements in this case is why we kept the original, rather than transformed,
basis vectors in Step 7 above.
Step 9: We have eliminated linear combinations below ε, but linear combinations just above ε remain. In
order to have well-conditioned mass and stiffness matrices, the basis is transformed further. Solving the
vibration eigenvalue problem

Kep = ω2
pM

(s)ep (32)
in the basis produced in Steps 2-8 results in an orthonormal set of eigenvectors with respect to the seed mass
matrix M (s). This constitutes the final expanded basis.

Gram-Schmidt orthonormalization procedure could have been used here instead, but this way both
the mass matrix M (s) and the stiffness matrix K are diagonal in the resulting basis, which is even more
convenient.

A procedure based entirely on each eigenvector’s own mass matrix M (s′), rather than the one involving
the seed basis mass matrix M (s), can also be written down.

IV.B.2. Accuracy of the expanded basis for the PA-1 problem

Expanded basis includes flex modes drawn from different mass states. A flex mode that is orthogonal to the
rigid modes with respect to its own mass matrix will not be so with respect to another mass matrix. To
ensure that the flex eigenvectors obtained with an expanded basis are orthogonal to the rigid modes, rigid
modes must be included in the basis generation procedure, and will thus be included in the final basis.

Tables 4 and 5 show the results for computing Empty modes in terms of the 51 vector basis obtained
from the seed basis of 40 (6 rigid + 34 flex) I1-intermediate fuel state modes, with the additional 11 modes
from other sets added by the above algorithm (accuracy set to ε = 0.01).

Table 4. Distances Dnn of 34 computed to true finite frequency Empty modes obtained with a 51 mode “expanded”
basis generated starting from 40 (6 rigid + 34 flex) I1-intermediate fueling level modes. The data is listed row by row.
Distances exceeding the basis selection accuracy of 0.01 are underlined. Data for two additional modes is presented.
They are seen to be entirely inaccurate. We generally only rely on 34 flex modes to be physical with this basis.

0.001449 0.001027 0.000058 0.000114 0.000098 0.000007
0.000125 0.000177 0.005595 0.004223 0.000265 0.000091
0.000281 0.001740 0.000260 0.000044 0.000071 0.000071
0.004469 0.015309 0.006778 0.007191 0.003384 0.013952
0.007818 0.006579 0.000020 0.020413 0.025037 0.014953
0.026726 0.000098 0.000082 0.000095 0.552487 1.381411

The results are clearly quite good. As we can see from Table 4, there are several computed modes whose
distances to the corresponding true modes exceed the threshold value of ε = 0.01 that was used in the basis
selection algorithm. In fact, the expanded basis algorithm’s accuracy threshold ε is a necessary, but not a
sufficient condition, for each computed eigenvector to be within distance ε of the true one. Therefore, we
can expect some of the eigenvectors to be less accurate than ε. However, we see that in practice one still
obtains excellent results.
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Table 5. Fractional frequency error (fcomputed−ftrue)/ftrue of 34 computed finite frequency modes in the Empty fueling
state obtained with a 51 mode “expanded” basis generated starting from 40 (6 rigid + 34 flex) I1-intermediate fueling
level modes. The data is listed row by row. Data for two additional computed modes is also included.

1.257e-04 1.077e-04 6.045e-08 4.961e-07 1.158e-07 2.046e-08
3.655e-07 3.200e-07 2.268e-04 1.600e-04 3.881e-07 1.368e-07
3.134e-07 1.615e-05 2.532e-07 9.081e-08 -8.321e-09 1.191e-07
5.980e-06 5.049e-04 2.212e-05 4.609e-05 6.757e-06 6.123e-05
6.176e-06 1.204e-05 -2.597e-11 1.296e-05 1.084e-05 7.687e-06
1.568e-05 -7.869e-11 -1.362e-11 -8.330e-12 4.604e-04 1.345e-03

IV.C. Modal Truncation of the Equations of Motion

Here we describe a technique for re-expressing modal variables in the updated integration basis that avoids
the need for the SR frame repositioning, which, as explained in Section III.A, would otherwise be needed
when a piecewise constant integration basis is used. We focus specifically on the practically relevant case
where modal truncation is also present.

The EOMs in Eq. (15) contain six rigid and m flex states in some fixed basis. In the present case, m is
larger then the number of modes we wish to integrate. Methods 2 and 3 remove the high frequency modes
of the changing system periodically, using the procedure described here. We consider free vibration of the
system without damping for which the motion consists of small rigid and flex displacements. The EOMs
reduce to [

Mrr Mre

MT
re Mee

] {
Ẍf

q̈

}
+

[
0 0
0 K

] {
Xf

q

}
=

{
0
0

}
(33)

where, Xf =

{
~xf

~αf

}
and, ~xf and ~αf are small translations and rotations of the body reference frame with

respect to inertial frame. This equation may be written more concisely as

MẌ + K̄X = 0 (34)

where definitions of X, M and K̄ follow from the above equations. Let Ψ be the eigenvector matrix of the
pair

[
M, K̄

]
such that ΨTMΨ = I (identity matrix) and ΨT K̄Ψ = 〈ω̄2〉 (diagonal matrix). Using the special

property of K̄ that all elements of its first six rows and columns, corresponding to the rigid body modes,

are zero, it can be shown that Ψ and 〈ω̄2〉 may be written as Ψ =

[
Ψrr Ψre

0 Ψee

]
and 〈ω̄2〉 =

[
0 0
0 〈ω2〉

]
.

The matrices Ψ and 〈ω̄2〉 have been partitioned according to rigid and flex components. We now truncate
Ψ by retaining columns that correspond only up to the desired frequency and define the truncated matrix

ΨR =

[
Ψrr ΨreR

0 ΨeeR

]
. Expressing the variables Xf and q by the transformation

{
Xf

q

}
=

[
Ψrr ΨreR

0 ΨeeR

] {
ξr

ξeR

}
= ΨRξR =

{
Ψrrξr + ΨreRξeR

ΨeeRξeR

}
=

{
Xf

ΨeeRξeR

}
(35)

We have now determined a transformation for the flex variable q = ΨeeRξeR where ξeR is the set of new
modal variables. The subscripts R and e represent the retained and elastic modes, respectively. Note that
the rigid coordinates are not affected by the transformation. Applying this transformation to Eq. (15) and
premutiplying the bottom equation by ΨT

eeR we get the modally reduced EOMs[
Mrr M̂re

M̂T
re M̂ee

] {
Af

¨ξeR

}
+

{
0

2ζ〈ωR〉ξ̇eR + 〈ω2
R〉ξeR

}
=

{
gr

ΨT
eeR ge

}
(36)

where, M̂re = MreΨeeR, M̂ee = ΨT
eeRMeeΨeeR and 〈ω2

R〉 = ΨT
eeRKΨeeR. In Eq. (36) damping is considered

to be modal, so that ΨT
eeRCΨeeR = 2ζ〈ωR〉, where ζ is the modal damping factor. Equation (36) is integrated
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numerically to propagate the rigid and flex states with time. The system flex variable q is computed from
ξeR using Eq. (35).

For a system with changing mass and or stiffness, ΨeeR changes and therefore it requires periodic updates.
When this happens ξeR must be re-initialized. The rigid states are propagated without re-initialization.
During re-initialization it is desired that q(2) = q(1) where the superscripts (1) and (2) represent states
before and after the transition. Using the transformation in Equation (35), it is therefore desired that
Ψ(2)

eeRξ
(2)
eR = Ψ(1)

eeRξ
(1)
eR . Without modal truncation Ψ(1)

eeR would be invertible and ξ
(2)
eR could be determined

directly. However, with truncation the dimension of q is greater than that of ξeR and therefore, we can
only estimate ξ(2)eR such that it would minimize a norm of the estimation error. One reasonable norm is
J = [Ψ(2)

eeRξ
(2)
eR − q(1)]TR[Ψ(2)

eeRξ
(2)
eR − q(1)] where, R is a positive definite matrix. Performing the minimization

with respect to ξ(2)eR we obtain

ξ
(2)
eR =

[
Ψ(2)T

eeR RΨ(2)
eeR

]−1

Ψ(2)T

eeR Rq
(1) (37)

K(2) is a good choice for R for the estimation of ξ(2)eR since it would minimize the strain energy corre-
sponding to the estimation error. With that choice, we get the estimate for ξ(2)eR

ξ
(2)
eR = 〈ω(2)−2

〉Ψ(2)T

eeR K
(2)q(1) (38)

For reinitialization of ξ̇(2)eR we follow the same procedure. In this case M
(2)
ee is a good choice for the

positive definite weighting matrix because the norm of the estimation error would be the corresponding
kinetic energy. We then get

ξ̇
(2)
eR =

[
Ψ(2)T

eeR M
(2)
ee Ψ(2)

eeR

]−1

Ψ(2)T

eeR M
(2)
ee q̇

(1) (39)

We note that this approach avoids the SR frame repositioning by starting with the eigenvectors

{
ΨreR

ΨeeR

}
and zeroing out their rigid parts ΨreR. Since these transformed vectors are not themselves eigenvectors, M̂ee

of Equation (36) is not diagonal in the resulting set of assumed modes.

V. Conclusions

We started with the Assumed-modes approach for simulating variable mass flexible spacecraft, using a
fixed set of mode shapes, but time-dependent mass matrix and other parameters in the EOMs. Given that
the eigenmodes change with time in such a system, we sought the means of characterizing the accuracy of
this approach in a systematic way.

We developed two measures of mode accuracy and applied them to the basis of fixed assumed modes in
various mass states, allowing us to characterize the ability of such a basis to accurately model the eigenvectors
at various levels of mass depletion. We found that the Assumed-modes method does not reproduce all of
the individual evolving eigenmodes accurately at all times, especially the higher frequency ones, making it
desirable to further assess the quality of the overall simulation results with this method.

Based on our prior experience with space robotic manipulator simulations, we also developed a simulation
technique with modal decomposition and truncation in which the set of modes for integrating the EOMs
is regularly updated to accurately match the evolving vibration eigenvectors. Accurate eigenmodes were
generated by solving a vibration eigenvalue problem in a larger basis than the number of modes used in the
EOMs. Two distinct types of such bases were used, resulting in two approaches with modal decomposition
and truncation.

These two methods, which agreed well with each other, were shown to reproduce the eigenmodes used in
the EOMs accurately throughout the whole mass range, thus serving as a benchmark for the Assumed-modes
method. The comparison showed that the Assumed-modes approach gave good overall results, validating it
as the high performance analysis tool for the PA-1 GN&C scenario.

We believe that these three techniques, with different trade-offs between fidelity and performance, offer
a useful variety of options for analysis as well as for verification and validation purposes. We also hope that
some of the specific technical problems addressed and solved during the course of this work may be of more
general interest to the modeling and simulation community.
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